CLICK TO JOIN FOR FREE SONY LABTOP

Register to Get a Labtop

Wednesday, December 12, 2007

Network Topologies

1- Star topology
2- Ring Topology
3- Bus Topology
4- Hybrid Topology

HYBRID TOPOLOGY

A hybrid topology is two or more topologies connected to each other to form a complete network. There are many different combinations that a hybrid can do, some of them are:
o Star – Bus o Star – Ring
Star – Bus
A star-bus topology is multiple star networks connected to each other via bus connection. All of the computers connected to each star network will have a centre piece which will either be a hub or a switch and the bus cabling will connect to the hub or switch to connect each star topology to each other.
One of the advantages of having this type of hybrid topology is that the rest of the computers in the star won’t be affected. This network is very easy to set up and is very easy to add on networks too. Adding on other networks could also cause problems, if the bus cabling is just Ethernet cable and there are alot of computers sharing information then the network could become slow and files could become corrupt or even lost. Another problem that could arise if the central hub or switch fails then that star network will not be able to communicate.
Star-Ring
A star-ring topology is multiple star networks wired to a ring connection. Again, each node within the star in this network will be connected to either a hub or a switch. If a computer goes down, then the network will still be alive compared to a normal ring topology, the whole network would go down. Because token passing is used in a ring topology, having more computers connected will not slow down the network which will allow greater traffic to be sent around the network at any one time.
source:wikipedia

RING TOPOLOGY

Ring Topology
All devices are connected to one another in the shape of a closed loop, so that each device is connected directly to two other devices, one on either side of it.



source:webopedia


BUS TOPOLOGY

Bus Topology
All devices are connected to a central cable, called the bus or backbone




source: webopedia









STAR TOPOLOGY

All devices are connected to a central hub. Nodes communicate across the network by passing data through the hub.





source:webopedia


Network topologies

The physical layout of a Network is called its Topology. It also involve in how the network devices will comunicate to each others.
Example are : Star topology, Bus Topology, Ring Topology, Hybrid Topology etc.

Tuesday, December 11, 2007

WAN ( Wide Area Network )

Wide Area Network (WAN) is a network that covers a broad area (i.e., any network whose communications links cross metropolitan, regional, or national boundaries ). Or, less formally, a network that uses routers and public communications links.
source:wikipedia

MAN ( Metropolitan Area Network )

This Network type is designed for a town or city. If we conect all LAN to each other in a city or town then the network will be called a MAN ( Metropolitan Area Network ).

LAN ( Local Area Network )

The network that is in a single building or office is called a LAN. Infact the computers are geographically close together. Example : School or college LAB Network, a single office Network etc.

Types of computer Networks

1- LAN ( Local Area Network )
2- MAN ( Metropolitan Area Network )
3- WAN ( Wide Area Network )

Computer Network

A group of two or more computers linked together is called a computer Network. In a network computers can communicate to each other, can share data, information and resources.

Monday, December 10, 2007

External security

Typically an operating system offers (or hosts) various services to other network computers and users. These services are usually provided through ports or numbered access points beyond the operating systems network address. Services include offerings such as file sharing, print services, email, web sites, and file transfer protocols (FTP), most of which can have compromised security.
At the front line of security are hardware devices known as
firewalls or intrusion detection/prevention systems. At the operating system level, there are a number of software firewalls available, as well as intrusion detection/prevention systems. Most modern operating systems include a software firewall, which is enabled by default. A software firewall can be configured to allow or deny network traffic to or from a service or application running on the operating system. Therefore, one can install and be running an insecure service, such as Telnet or FTP, and not have to be threatened by a security breach because the firewall would deny all traffic trying to connect to the service on that port.
source:wikipedia

Internal security

Internal security can be thought of as protecting the computer's resources from the programs concurrently running on the system. Most operating systems set programs running natively on the computer's processor, so the problem arises of how to stop these programs doing the same task and having the same privileges as the operating system (which is after all just a program too). Processors used for general purpose operating systems generally have a hardware concept of privilege. Generally less privileged programs are automatically blocked from using certain hardware instructions, such as those to read or write from external devices like disks. Instead, they have to ask the privileged program (operating system kernel) to read or write. The operating system therefore gets the chance to check the program's identity and allow or refuse the request.
An alternative strategy, and the only
sandbox strategy available in systems that do not meet the Popek and Goldberg virtualization requirements, is the operating system not running user programs as native code, but instead either emulates a processor or provides a host for a p-code based system such as Java.
Internal security is especially relevant for multi-user systems; it allows each user of the system to have private files that the other users cannot tamper with or read. Internal security is also vital if auditing is to be of any use, since a program can potentially bypass the operating system, inclusive of bypassing auditing.
source:wikipedia

Security

Many operating systems include some level of security. Security is based on the two ideas that:
The operating system provides access to a number of resources, directly or indirectly, such as files on a local disk, privileged system calls, personal information about users, and the services offered by the programs running on the system;
The operating system is capable of distinguishing between some requesters of these resources who are authorized (allowed) to access the resource, and others who are not authorized (forbidden). While some systems may simply distinguish between "privileged" and "non-privileged", systems commonly have a form of requester identity, such as a user name. Requesters, in turn, divide into two categories:
Internal security: an already running program. On some systems, a program once it is running has no limitations, but commonly the program has an identity which it keeps and is used to check all of its requests for resources.
External security: a new request from outside the computer, such as a login at a connected console or some kind of network connection. To establish identity there may be a process of authentication. Often a username must be quoted, and each username may have a password. Other methods of authentication, such as magnetic cards or biometric data, might be used instead. In some cases, especially connections from the network, resources may be accessed with no authentication at all.
In addition to the allow/disallow model of security, a system with a high level of security will also offer auditing options. These would allow tracking of requests for access to resources (such as, "who has been reading this file?").
Security of operating systems has long been a concern because of highly sensitive data held on computers, both of a commercial and military nature. The
United States Government Department of Defense (DoD) created the Trusted Computer System Evaluation Criteria (TCSEC) which is a standard that sets basic requirements for assessing the effectiveness of security. This became of vital importance to operating system makers, because the TCSEC was used to evaluate, classify and select computer systems being considered for the processing, storage and retrieval of sensitive or classified information.
source:wikipedia

Networking

Most current operating systems are capable of using the TCP/IP networking protocols. This means that computers running dissimilar operating systems can participate in a common network for sharing resources such as computing, files, printers, and scanners using either wired or wireless connections.
Many operating systems also support one or more vendor-specific legacy networking protocols as well, for example,
SNA on IBM systems, DECnet on systems from Digital Equipment Corporation, and Microsoft-specific protocols on Windows. Specific protocols for specific tasks may also be supported such as NFS for file access.
source:wikipedia

Disk and file systems

All operating systems include support for a variety of file systems. Modern file systems comprise a hierarchy of directories. While the idea is conceptually similar across all general-purpose file systems, some differences in implementation exist. Two noticeable examples of this are the character used to separate directories, and case sensitivity.
Unix demarcates its
path components with a slash (/), a convention followed by operating systems that emulated it or at least its concept of hierarchical directories, such as Linux, Amiga OS and Mac OS X. MS-DOS also emulated this feature, but had already also adopted the CP/M convention of using slashes for additional options to commands, so instead used the backslash (\) as its component separator. Microsoft Windows continues with this convention; Japanese editions of Windows use ¥, and Korean editions use ₩.[1] Versions of Mac OS prior to OS X use a colon (:) for a path separator. RISC OS uses a period (.).
Unix and
Unix-like operating systems allow for any character in file names other than the slash and NUL characters (including line feed (LF) and other control characters). Unix file names are case sensitive, which allows multiple files to be created with names that differ only in case. By contrast, Microsoft Windows file names are not case sensitive by default. Windows also has a larger set of punctuation characters that are not allowed in file names.
File systems may provide
journaling, which provides safe recovery in the event of a system crash. A journaled file system writes information twice: first to the journal, which is a log of file system operations, then to its proper place in the ordinary file system. In the event of a crash, the system can recover to a consistent state by replaying a portion of the journal. In contrast, non-journaled file systems typically need to be examined in their entirety by a utility such as fsck or chkdsk. Soft updates is an alternative to journalling that avoids the redundant writes by carefully ordering the update operations. Log-structured file systems and ZFS also differ from traditional journaled file systems in that they avoid inconsistencies by always writing new copies of the data, eschewing in-place updates.
Many Linux distributions support some or all of
ext2, ext3, ReiserFS, Reiser4, GFS, GFS2, OCFS, OCFS2, and NILFS. Linux also has full support for XFS and JFS, along with the FAT file systems, and NTFS.
Microsoft Windows includes support for FAT12, FAT16, FAT32, and NTFS. The NTFS file system is the most efficient and reliable of the four Windows file systems, and as of
Windows Vista, is the only file system which the operating system can be installed on. Windows Embedded CE 6.0 introduced ExFAT, a file system suitable for flash drives.
Mac OS X supports HFS+ as its primary file system, and it supports several other file systems as well, including FAT16, FAT32, NTFS and ZFS.
Common to all these (and other) operating systems is support for file systems typically found on removable media. FAT12 is the file system most commonly found on
floppy discs. ISO 9660 and Universal Disk Format are two common formats that target Compact Discs and DVDs, respectively. Mount Rainier is a newer extension to UDF supported by Linux 2.6 kernels and Windows Vista that facilitates rewriting to DVDs in the same fashion as what has been possible with floppy disks.
source:wikipedia

Memory management

Current computer architectures arrange the computer's memory in a hierarchical manner, starting from the fastest registers, CPU cache, random access memory and disk storage. An operating system's memory manager coordinates the use of these various types of memory by tracking which one is available, which is to be allocated or deallocated and how to move data between them. This activity, usually referred to as virtual memory management, increases the amount of memory available for each process by making the disk storage seem like main memory. There is a speed penalty associated with using disks or other slower storage as memory – if running processes require significantly more RAM than is available, the system may start thrashing. This can happen either because one process requires a large amount of RAM or because two or more processes compete for a larger amount of memory than is available. This then leads to constant transfer of each process's data to slower storage.
Another important part of memory management is managing virtual addresses. If multiple processes are in memory at once, they must be prevented from interfering with each other's memory (unless there is an explicit request to utilise
shared memory. This is achieved by having separate address spaces. Each process sees the whole virtual address space, typically from address 0 up to the maximum size of virtual memory, as uniquely assigned to it. The operating system maintains a page table that match virtual addresses to physical addresses. These memory allocations are tracked so that when a process terminates, all memory used by that process can be made available for other processes.
The operating system can also write inactive memory pages to secondary storage. This process is called "paging" or "swapping" – the terminology varies between operating systems.
It is also typical for operating systems to employ otherwise unused physical memory as a
page cache; requests for data from a slower device can be retained in memory to improve performance. The operating system can also pre-load the in-memory cache with data that may be requested by the user in the near future; SuperFetch is an example of this.
source: wikipedia

Process management

Every program running on a computer, be it a service or an application, is a process. As long as a von Neumann architecture is used to build computers, only one process per CPU can be run at a time.[citation needed] Older microcomputer OSes such as MS-DOS did not attempt to bypass this limit, with the exception of interrupt processing, and only one process could be run under them (although DOS itself featured TSR as a very partial and not too easy to use solution).
Most operating systems enable concurrent execution of many processes and programs at once via
multitasking, even with one CPU. The mechanism was used in mainframes since the early 1960s, but in the personal computers it became available in 1990s. Process management is an operating system's way of dealing with running those multiple processes. On the most fundamental of computers (those containing one processor with one core) multitasking is done by simply switching processes quickly. Depending on the operating system, as more processes run, either each time slice will become smaller or there will be a longer delay before each process is given a chance to run. Process management involves computing and distributing CPU time as well as other resources. Most operating systems allow a process to be assigned a priority which affects its allocation of CPU time. Interactive operating systems also employ some level of feedback in which the task with which the user is working receives higher priority. Interrupt driven processes will normally run at a very high priority. In many systems there is a background process, such as the System Idle Process in Windows, which will run when no other process is waiting for the CPU.
source:wikipedia

Services of an Operating System

1- Process management
2- Memory management
3- Disk and file systems
4- Networking
5- Security
6- Internal security
7- External security

source:wikipedia

Definition of an Operating System (OS)

An operating system (OS) is any software that can boot (start up) a computer and manage its functions. Operating systems come in various forms to meet different requirements. An operating system is an interface between user and hardware.

source:wikipedia

Operating System (OS)


An operating system (OS) is the software that manages the sharing of the resources of a computer and provides programmers with an interface used to access those resources. An operating system processes system data and user input, and responds by allocating and managing tasks and internal system resources as a service to users and programs of the system. At the foundation of all system software, an operating system performs basic tasks such as controlling and allocating memory, prioritizing system requests, controlling input and output devices, facilitating networking and managing file systems. Most operating systems come with an application that provides a user interface for managing the operating system, such as a command line interpreter or graphical user interface. The operating system forms a platform for other system software and for application software.


The most commonly-used contemporary desktop OS is
Microsoft Windows, with Mac OS X also being well-known. Linux, GNU and the BSD are popular Unix-like systems.


source:wikipedia, webopedia

Types Of Computer Softwares

Practical computer systems divide software systems into three major classes: system software, programming software and application software, although the distinction is arbitrary, and often blurred.

System software helps run the computer hardware and computer system. It includes operating systems, device drivers, diagnostic tools, servers, windowing systems, utilities and more. The purpose of systems software is to insulate the applications programmer as much as possible from the details of the particular computer complex being used, especially memory and other hardware features, and such as accessory devices as communications, printers, readers, displays, keyboards, etc.

Programming software usually provides tools to assist a programmer in writing computer programs and software using different programming languages in a more convenient way. The tools include text editors, compilers, interpreters, linkers, debuggers, and so on. An Integrated development environment (IDE) merges those tools into a software bundle, and a programmer may not need to type multiple commands for compiling, interpreter, debugging, tracing, and etc., because the IDE usually has an advanced graphical user interface, or GUI.

Application software allows end users to accomplish one or more specific (non-computer related) tasks. Typical applications include industrial automation, business software, educational software, medical software, databases, and computer games. Businesses are probably the biggest users of application software, but almost every field of human activity now uses some form of application software.
source:wikipedia

Computer Software

Computer software is a general term used to describe a collection of computer programs, procedures and documentation that perform some task on a computer system. The term includes application software such as word processors which perform productive tasks for users, system software such as operating systems, which interface with hardware to provide the necessary services for application software.
source:wikipedia

Google